Geometry Engineering in Small Systems and Collective Flow Results from PHENIX

Qiao Xu for the PHENIX Collaboration

Geometry handles on collectivity in small systems

Geometry Engineering

Test if the initial geometry is translated to final-state momentum anisotropy

High-multiplicity triggered event samples

DDC CIT	bbc charge south				
collision system (200 GeV)	increase in central events				
p+Au PRC 95 (2017) 034910	x40				
d+Au preliminary	x15				
³ He+Au PRL115, 142301 (2015)	x10				

2016 d+Au √s _{NN} (GeV)	Number of Central Events Recorded
20	15 Million
39	137 Million
62.4	131 Million
200	636 Million

Experimental methods in PHENIX

Event plane: determined at large backward pseudorapidity

Particles: tracked over a large pseudorapidity range

Or

2-particle correlations comprised of:

- 1) particle at mid-rapidity
- 2) energy cluster in BBC
- 3) tracks in FVTX

pair amplitude modulation

$$c_n = v_n^a \times v_n^b$$

EP: Measurements of $v_n(p_T)$ at mid rapidity

$$v_2 = \frac{\langle \cos 2(\phi - \Psi_2) \rangle}{\text{Res}(\Psi_2)}$$

To optimize Resolution, we use:

- Central Arms
- FVTX-South
- BBC-South

2-particle correlations

- various detector combinations are used
- 2-particle correlations used to:
 - estimate nonflow (in conjunction with min bias pp data)
 - look for the ridge
 - in some cases -> to confirm the EP measurements

RESULTS

1. Ridge in different systems

- 2. Geometry scan: flow of inclusive particles
- 3. Geometry scan: flow of identified particles

Ridge (d/3He+Au), and no clear ridge pA

A clear ridge is seen with all detector combinations, even for $\Delta \eta > 6.2$

RESULTS

- 1. Ridge in different systems at 200 GeV
 - Pronounced ridge in d/3He+Au, but not in p+A
 - In d+Au, the ridge extends over $\Delta \eta > 6.2$
- 2. Geometry scan: flow harmonics of inclusive particles
- 3. Geometry scan: flow harmonics of identified particles

Charged hadron v₂: d/³He+Au

- $v_2(^3HeAu) \sim v_2(dAu)$
- $\varepsilon_2(^3\text{HeAu}) = 0.50, \, \varepsilon_2(\text{dAu}) = 0.54$

Charged hadron v₂: p+Au, p+Al

(growing)
asymmetric
systematics
from nonflow

- $v_2(pAu) \sim v_2(pAl)$
- $\varepsilon_2(pAu) = 0.23$, $\varepsilon_2(pAl) = 0.30$

Nonflow estimation based on pp data

- Correlations in pp minbias data scaled by multiplicity
- Not subtracted cited as a systematic uncertainty

Charged hadron v_2 : systems group by ε

- $v_2(^3\text{HeAu}) \sim v_2(\text{dAu}) > v_2(\text{pAu}) \sim v_2(\text{pAl})$
- Geometry control works!

Geometry engineering, v_2 (p_T), and models

- Hydrodynamics with small η/s works!
- AMPT: weakly coupled partonic cascade+quark coalescence+hadronic cascade also works at low p_T.
- Other observables?

Triangular flow at 200 GeV in different systems: insights about the role of preflow

Triangular flow at 200 GeV in different systems: insights about the role of preflow

Trends well described with hydro without preflow

Include pre-equilibrium flow

Relative contributions from pre-equilibrium and QGP need retuning?

v_2/ϵ_2 in systems with different geometry

The v_2/ϵ_2 in p+Au is higher than that of d+Au and 3 He+Au collisions

³He/d+Au − some events hot spots never connect and so $ε_2 \rightarrow v_2$ translation incomplete

This behavior is within the expectation of SONIC model, which includes Glauber initial geometry and viscous hydro evolution.

RESULTS

- 1. Ridge in different systems at 200 GeV
- 2. Geometry scan: flow harmonics of inclusive particles
- 3. Geometry scan: flow harmonics of identified particles

Identified particle v₂ in different systems

Identified particle v₂ in different systems

- Mass-ordering in all three systems
- Less pronounced in p+Au than in d+Au and ³He+Au

NCQ scaling in different systems

- Scaling works in d/³He+Au well as in A+A collisions
- The difference became larger for p+Au

Identified particle v₂ compared to hydro

Well described p/d/³He+Au results at low p_T

- Smaller split at p+Au is predicted which implies smaller radial push
- High p_T mass split not seen, recombination not included

27

Identified particle v₂ compared to hydro

- Well described p/d/³He+Au results at low p_T
- High p_⊤ mass split is not seen, recombination not included

Identified particle v₂ compared to AMPT

Overall trend is predicted, could be explained by quark

coalescence + hadronic rescattering

PH ※ ENIX

v₂ magnitude under-predicted at high p_T

Origin of the mass splitting of elliptic anisotropy in a multiphase transport model - Li, Hanlin et al. Phys.Rev. C93 (2016) no.5, 051901

Results and Conclusions

- 1. Ridge in different systems at 200 GeV
 - Pronounced ridge in d/3He+Au, but not in p+A
 - In d+Au, the ridge seen for $\Delta \eta > 6.2 ->$ truly long-range
- 2. Geometry scan: flow of inclusive particles
 - v₂(p_T) and v₃(p_T) follow initial geometry
 - Hydro and AMPT describe the data up to p_T ~ 3 or 1 GeV
 - v₃ in dAu and ³HeAu discriminate against preflow/flow
- 3. Geometry scan: flow of identified particles
 - Identified particle v₂(p_T) shows mass ordering
 - The splitting of pion and proton in low p_T in three systems is predicted by AMPT and hydro models

BACKUP

Geometry handles on collectivity in small systems

Geometry Engineering

Initial State Hot Spots

Glauber with nucleons

Collectivity in Final State

• $v_2(^3\text{HeAu}) \sim v_2(\text{dAu})$

Hydrodynamics

- $> v_2(pAu) \sim v_2(pAl)$
- $v_3(^3HeAu) > v_3(dAu)$

Table 6: Summary of the systematic uncertainties on the v_2 vs p_T measurements at 200, 62.4, and 39 GeV.

Sys	200	62.4	39
Double interactions	+9.4%	< 1%	< 1%
Event Plane	4.5%	4.5%	4.5%
East vs West	1.6%	3.6%	5.9%
PC3 Match	1%	1%	1%
$\phi ext{ shift}$	1%	1%	$10\% \ p_T < 1 \ {\rm and} \ 5\% \ p_T > 1$
Total	$^{+10.6\%}_{-4.9\%}$	$\pm 5.8\%$	$\pm 7.5\%$

Table 8: A summary of the systematic uncertainties applied to the measurement of v_2 vs η in 200, 62.4, and 39 GeV d+Au collisions.

Sys	Type	200	62	39
Double Interactions	В	+2%	< 1%	< 1%
Event Plane	В	4.8%	4.8%	4.8%
Fake Tracks	В	3.3%	3.3%	3.3%
E vs W	В	1.6%	3.6%	5.9%
AMPT correction	В	$\sim 0-3\%$	$\sim 0-3\%$	$\sim 0-3\%$
Total (approx.)	В	$^{+8\%}_{-7\%}$	±8%	$\pm 9\%$

Cumulants: measure integrated v₂ from tracks in FVTX as a function of N_{trk}

- FVTX: forward vertex detector
 —silicon strip technology
- Very precise vertex/DCA determination
- No momentum determination, p_T dependent efficiency measured v₂ roughly 18% higher than true

v₂ vs η: analysis method

- We want to measure integrated v₂ (0<p_T<∞)
- No p_⊤ information available from FVTX
- Devise a correction based on AMPT

v₂ vs η: analysis method

- Determine partonplane angle ,"true" ψ₂
- Use all final-state charged particles to determine "true" v₂(η)

2. reconstruct events with full GEANT simulation in PHENIX

 Analyze using final-state particles in the PHENIX acceptance to get v₂(η) Correction factor = v_2 from step (2)/ (1)

- Apply correction to data v₂(η)
- Change the AMPT input parton cross section (and resulting v₂)→ repeat
- Change the input p_T spectra
 → repeat

dAu BES: Event plane measurements of v₂

